This homework introduces you to some interesting, special matrices, giving some feel for what matrices do to vectors. General guidelines: Read through each complete problem carefully before attempting any parts. Feel free to collaborate in groups of size 2-3, but always note the names of your collaborators on your submitted homework. For graphs: clearly label your axes and use good color and symbol choices. Print out your matlab code (in the form of a script file). For derivations you’re asked to do ‘by hand’ (in other words, analytically, using paper and pencil) feel free to turn in handwritten or typed-out work.

1) Unit vectors, angle between vectors, and vector projection.
 a. Derive the unit vectors e_u, e_v in the direction of $u = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ and $v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.
 b. Derive the inner angle between u and v. Show your work.
 c. Express u with a different set of basis vectors. In a. above, we wrote u in the standard basis of $\hat{e}_1 = (1, 0), \hat{e}_2 = (0, 1)$ as $u = 3\hat{e}_1 + 1\hat{e}_2$. Thus, the coefficients or projections of u onto that standard basis are 3, 1, respectively. The new basis is $\hat{e}'_1 = \frac{1}{\sqrt{2}}(1, 1), \hat{e}'_2 = (-1, 1)$. Is this an orthogonal basis? Are the basis vectors normalized (unit length)? First draw by hand the old basis, the new basis, and the vector u. Also by hand on the same plot, show how to project u onto the old and new bases. Derive the coefficients of u, v in the new basis. Show your work.

2) Some special matrices, plotting vectors in Matlab.
 a. Consider the 2×2 matrix $M(\theta)$, given by
 $$
 M(\theta) = \begin{pmatrix}
 \cos(\theta) & -\sin(\theta) \\
 \sin(\theta) & \cos(\theta)
 \end{pmatrix}.
 $$
 for some choice of θ (you choose). In Matlab, multiply M into the vector $v = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Plot v and $v' = Mv$ on the same plot. (Hint: use plotv) Next generate $v'' = Mv'$ (verify that and plot that on top of the previous plot. (Note that
\(\mathbf{v}', \mathbf{v}'' \) do not refer to transposes of \(\mathbf{v} \) here, even though primes denote vector and matrix transposition in Matlab; here they are simply the names of different vectors.) Repeat for various different choices of \(\theta \). State precisely how \(\mathbf{v}, \mathbf{v}' \) and \(\mathbf{v}'' \) differ and in what ways they remain the same. Next, compute the product \(M\mathbf{v} \) by hand, for general \(\theta \). What can you conclude about the effect of \(M(\theta) \) on vectors? What might you want to call the matrix \(M \)? Finally, compute \((M(\theta))^2 \) in terms of the variable \(\theta \), and rewrite each element as just a cosine or a sine, using the double-angle/half-angle formulae for sines and cosines. What does applying \(M \) repeatedly do to a vector?

b. Consider another \(2 \times 2 \) matrix \(R \), given by

\[
R = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\]

Right-multiply \(R \) by hand (analytically) with an arbitrary vector \(\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \), to generate \(\mathbf{v}' = R\mathbf{v} \). Predict what will happen if you repeat the process, and multiply \(\mathbf{v}' \) by \(R \)? Do not do this in Matlab. Instead, use the observation that \(\mathbf{v}'' = R\mathbf{v}' = R^2 \mathbf{v} \), and by hand (not in Matlab), compute \(R^2 \).

Summarize the operation that \(R \) performs on vectors. What might you want to call it?

c. Consider the \(2 \times 2 \) matrix \(A \), given by

\[
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]

and consider the column vector \(\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \). By hand, compute \(\mathbf{y} = A\mathbf{v} \) and \(\mathbf{z}^T = \mathbf{v}^T A \). Is \(\mathbf{y} = \mathbf{z} \)? If not, what condition on \(A \) will guarantee that they are? This is the definition of a symmetric matrix.

3) Orthogonal matrices

a. Length-preserving matrices: Derive the conditions that an arbitrary-dimension square matrix \(A \) must obey, to preserve the norms of all vectors it acts on. (Hint: recall that the squared norm of a real-valued column vector \(\mathbf{x} \) is given by \(\mathbf{x}^T \mathbf{x} \).) This is the definition of an orthogonal matrix.

b. Are the matrices \(M(\theta) \) and \(R \) above orthogonal matrices?
c. Determinant: As we have already seen, an important scalar quantity associated with a square matrix is its determinant. Compute the determinant of the matrices $M(\theta)$ and R above (without substituting in a specific value of θ). Orthogonal matrices always have determinant equal to ± 1.

d. Here’s another orthogonal matrix:

$$P = \begin{pmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0
\end{pmatrix}$$

Verify by hand that it’s orthogonal, show your work. Figure out what it does, and explain.